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We report for Beatpath and Ranked Pairs an exhaustive examination of how the winning candidate
changes when one candidate is dropped, for initial numbers of candidates of 4 and 5, and report
sampling results of what happens for initial numbers of candidates from 6 to 18. Consistent with all
the searches is the observation that if under Beatpath there is a single rank order, and if when the
winning candidate drops there is also a single rank order, then in the new rank order the candidate
who formerly placed second must place above the candidate who formerly placed third; and therefore
we add to the proof by M. Schulze that the candidate who placed second cannot become placed last,
the observation that the candidate who placed third cannot become placed first. Other than those
two excluded cases, for candidates numbering from 4 to 18 we find that a candidate who placed
anywhere in the original rank order could be found to be placed anywhere in the new rank order;
in particular the candidate who had placed last could come to be placed first, and the candidate
who had placed second could come to be placed second-to-last. These results are compared to the
known properties of Ranked Pairs, and their larger political significance discussed.

I. INTRODUCTION

The outcomes of the Beatpath [1] and the Ranked
Pairs [2] election methods are examined, looking in par-
ticular at how a rank order can change when one can-
didate is dropped from a race. We will work with what
we shall call the common case of a victory matrix: all
the magnitudes of the elements above the diagonal are
distinct; and none of them are zero. We recall the ele-
ment in row j and column k of a victory matrix is the
number of ballots on which candidate j is placed ahead
of candidate k, minus the number on which k is placed
ahead of j; and the diagonal elements are by convention
set to 0.

Section II describes how we can assemble the rank
order of a large election, under Ranked Pairs or under
Beatpath, from the rank orders of component elections
that each contain a cycle of all that component’s candi-
dates; and how for such a component we can sample all
its possible elections, either exhaustively or by sampling.
Section III describes the known properties of a rank or-
der under Ranked Pairs, and the changes possible when
either its winning or losing candidate is dropped. Sec-
tion IV describes the known properties under Beatpath,
and also the unproven properties that are consistent with
the numerical explorations in this paper, and the signifi-
cance of the properties if they could be proved; it serves
as a summary of the computational results described in
the following sections VI through XI. For completeness
Section V describes what can happen with 3 candidates,
when the Ranked Pairs and the Beatpath outcomes are
identical. Sections VI and VII show the results of ex-
haustive searches of the results of all elections with re-
spectively four and five candidates under Beatpath. Sec-
tions VIII, IX, and X show the results for six, seven,
and eight candidates of a sampling of the elections possi-
ble under Beatpath. Section XI show the results from a
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cruder sampling of elections under Beatpath for a num-
ber of candidates between nine and eighteen. Section XII
shows how to construct a common-case election for N
candidates where the number of rank orders consistent
with Beatpath equals (N − 2)!. Section XIII discusses
the larger political significance of our mathematical and
computational results.
To complete the exposition, Appendix A1 contains

proofs of pertinent results concerning Ranked Pairs, and
Appendix B offers an alternative proof of a special case
of a theorem [3] of M. Schulze concerning Beatpath. Ap-
pendix C) contains tables of victory matrices that under
Beatpath have interesting changes in the rank order when
the winning candidate drops out.

II. COMPONENTS AND SAMPLES

Every victory matrix V in the common case reduces
to one where the magnitude of the elements above the
diagonal are the positive integers 1 to K = N(N − 1)/2,
whereN is the number of candidates; one merely replaces
in V the off-diagonal element with the lowest magnitude
with an element of magnitude 1, then the element with
the next lowest with an element of magnitude 2, and so
on, while preserving the signs and keeping the matrix an-
tisymmetric. These changes preserve election outcomes
under both Ranked Pairs and Beatpath, because those
outcomes depend on the magnitudes of the elements only
through their order from large to small, and not through
their absolute size.
All possible common-case elections can therefore be

represented by a permutation of the digits 1 to K put
into the K above-diagonal elements of V, with an ar-
bitrary sign given to each of those elements; for a net
of 2KK! elections. Only certain of these prove to be the
fundamental building blocks for the rest.
Associate with each pattern of signs a directed graph,

where each candidate is represented by a node, and for
each pair of distinct nodes j and k an arc runs from j
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to k if Vjk > 0 (and no arc runs from any node directly
back to itself). In graph theory these graphs are called
tournament graphs. A tournament graph is reducible [4]
if its nodes can be partitioned into two nonempty sets B
and C, such that an arc runs from each node in B to
each node in C. Equivalently, if it is possible to label the
nodes so that the adjacency matrix for the graph takes
the form (

B 1
0 C

)
,

where the matrix B and the matrix C are square, and
the 1 and the 0 rectangular blocks in the upper right and
lower left corners contain elements that are respectively
all 1 or all 0. A tournament graphs for which no such
partition of nodes is possible is irreducible.
In such a graph, either or both of the set B and C,

each considered as a representing graph that involves only
its set of nodes, may prove reducible; and the sets into
which either splits might in turn prove reducible, and so
on. This sequence of splits must eventually halt; suppose
in our example it does after the set C has split into the
two irreducible sets D and E, when the adjacency matrix
would take the form B 1 1

0 D 1
0 0 E

 ,

where the dimensions of the rectangular blocks of 1’s
and 0’s vary so as to match the sizes of the square
blocks B, D, and E.

The significance of this result for elections is as follows.
The candidates corresponding to the nodes in the set B
form the Smith set of the election. Under a method that
is both Smith and independent of Smith-dominated al-
ternatives (or ISDA), and that yields a single rank order
for any election, the j the candidates in B will form the
first j candidates in the whole election, and the order
among those j will be identical to the order as if only the
candidates inB had ever run. Then the k candidates inD
will form the next k candidates in the rank order for the
whole election, and the order among those k candidates
will be identical to the order as if only the candidates
in D had ever run. And so on down the diagonal, until
the rank order for the whole election is known.

If we imagine some candidate in any of the sets, say
set D, were dropped from the election, the only change
in the whole rank order is would be the replacement of
the rank order of the candidates in D by the rank order
for the election in which the one candidate from D had
been dropped.

Ranked Pairs has the properties required [5], so what
rank orders might appear, and how a rank order can
change if a candidate is dropped, reduce to the problems
of what rank orders can appear in elections correspond-
ing to irreducible graphs, and how such a rank order can
change if a candidate is dropped.

Beatpath also has the properties required [6], and so
much the same structure; except that Beatpath can form
(in the common case of a victory matrix and when the
number of candidates is 4 or more) an election that pro-
vides not a total order of the candidates but a partial
order; or to describe the same phenomenon in other lan-
guage, the outcomes of each of the separate elections B
or C or D may be consistent with more than one rank
order. This changes things only slightly; the list of all
the rank orders consistent with the whole election are
all those made by any choice of the rank orders consis-
tent with B, followed by any choice of those consistent
with C, followed by any choice of those consistent withD.
Equivalently, if the outcome of a Beatpath election is a
partial order that is represented by a (poset) matrix P ,
where Pjk = 1 if candidate j must precede candidate k in
the partial order and is zero otherwise, then in our sam-
ple election the partial order for the whole election can
be assembled from the partial orders from its separate
component elections asP (B) 1 1

0 P (D) 1
0 0 P (E)

 .

If we learn that the candidate ranked last of five can
come to be ranked first if the winner drops, we can for
example construct an election where dropping the fourth
candidate causes the candidate in eighth place to become
ranked third, merely by padding the five-candidate race
with three more candidates all of whom dominate the
other five. We can also pad this election with any num-
ber of candidates all eight candidates dominate, so we will
know we can construct such an election for any larger
number of candidates as well. Therefore under either
Ranked Pairs or Beatpath to study how a candidate in
position k of a rank order can change position if a can-
didate in position j ̸= k were to drop, all we need study
are the outcomes of elections whose patterns of signs in
their victory matrices correspond to tournament graphs
that are irreducible.
These graphs have alternate and equivalent descrip-

tions: they are [7] the tournament graphs that are
strongly connected; and also [8] the tournament graphs
that contain a Hamiltonian cycle.
Actually we need study even less; the assignment

of real candidates to particular rows (or equivalently
columns) of V are irrelevant and may be freely permuted,
since we intend either to run through, or to sample uni-
formly, all the permutations of the magnitudes of the ele-
ments of V. We are therefore free to position the required
Hamiltonian cycle by forcing the sign of the elements on
the superdiagonal of V, as well as the sign of the ele-
ment VN1, to be positive. This convention fixes N signs,
so the number of patterns of signs to study is now 2K−N,
not 2K.
More generally, the freedom to permute the rows and

columns of V allows us to study only patterns of signs
that correspond to the set of tournament graphs that
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are not merely irreducible but also topologically distinct,
that is, identical up to a relabeling of the nodes.

The numbers # of irreducible tournament graphs for
given N forms sequence A051337 in the Online Encyclo-
pedia of Integer Sequences [9]. We have then the follow-
ing table.

N 2K 2K−N #
1 · · · · · · · · ·
2 · · · · · · · · ·
3 8 1 1
4 64 4 1
5 1024 32 6
6 32768 512 35
7 2097152 16384 353
8 268435456 1048576 6008

Aside from making an exhaustive search for N = 5 prac-
tical, there is another advantage to using only the tour-
nament graphs. One question we seek to answer by a
random search is, “If the candidate ranked first in an
election were to drop out, can the candidate who had
been ranked last become ranked first?” A problem with
looking for this by random searches among the 2Karbi-
trary patterns of signs is that it could only occur in an
irreducible graph, and asN increases such graphs become
a small fraction of the 2K. For N = 8 this fraction [10]
is 0.119, and by N = 15 it is 0.0018; one would be spend-
ing most of one’s computer time analyzing elections that
had zero chance of including what was being looked for.

On my simple laptop [11] an exhaustive search of the
elections of all patterns of signs indexed by #, and all
permutations of the magnitudes, can be run for N = 5
overnight. For larger N we obtain results by sampling
some number of random permutations of magnitudes for
each of the # graphs for that N . That number # in-
creases sharply with N , but all the graphs can be found
in a few hours for N up to 8 using the following simple
tricks. I am sure there is a more efficient way, but this
suffices.

On an N by N matrix our restriction to include only
isomorphically distinct tournament graphs lets us set the
sign of all the elements on the superdiagonal, and the
sign of the element (N, 1), to be +1; this ensures that
the resulting graph must have at least one cycle. The
N elements on the super-superdigaonal, together with
the elements (N − 1, 1) and (N, 2), need not be chosen
independently from all 2Npatterns; we need accept only
one out of each of the N patterns that result from a
repeated cyclic relabeling of candidates 1 → 2 and 2 → 3
and . . . , and N − 1 → N and N → 1; this trick reduces
the number of patterns of signs we need consider by a
factor of roughly N . For each such pattern, there remain
above the diagonal N(N−5)/2 signs not yet determined.
For these we construct a graph for each possible choice
of these signs.

The trouble now is that many of these patterns of signs
construct graphs that are mutually isomorphic.

We remove these isomorphic duplicates in a two-step

process. If A is an adjacency matrix of a graph, then Aq

has as its element Aq
jk the number of directed paths that

connect node j to node k using with exactly q−1 interme-
diate nodes that are not in general distinct (so j14213k
is legitimate list of nodes that connect node j to node k;
and so is j123j). The sorted list of row sums of Aq forms
a vector such that any adjacency matrices yielding differ-
ent vectors represent graphs that are are isomorphically
distinct; however, matrices yielding the same vector may
represent graphs that are isomorphically distinct or iso-
morphically identical.
We run through all the graphs and sort them into

smaller groups by the components of this vector us-
ing q = 4. An advantage of this simple scheme [12] is that
this vector allows us to place a graph within its proper
group, and to create a new group, without having to do
work that scales as the square of the number of graphs.
Once we have the groups complete, we run through each
separate group using a binary comparison (the imple-
mentation nauty in MapleTM) to remove the duplicates
within each group. For each group this takes a number of
comparisons that is the order of the number of elements
in the group, times the number of topologically distinct
graphs to be found within the group; though the binary
comparison tends to be slow, overall this scheme is feasi-
ble for N up to 8 even on my laptop. One check is that
the number of distinct graphs found for each matches the
number in sequence A051337.
Once we have the isomorphically distinct tournament

graphs to give the admissible pattern of signs, we still
have the problem of testing all permutations of the mag-
nitudes 1 to K = N(N−1)/2 that may appear above the
diagonal of the victory matrix, if we wish to do an ex-
haustive search of all the elections in the common case.
Unfortunately K! grows rapidly with N ; the following
table shows that with an exhaustive search for N = 5
proving to require a run overnight, achieving an exhaus-
tive search even for N = 6 is unfeasible.

N # K! # ·K!
1 1 · · · · · ·
2 0 · · · · · ·
3 1 3! = 6 6
4 1 6! = 720 720
5 6 10! = 3 628 800 21 772 800
6 35 15! = 1 307 674 368 000 45 768 602 880 000

Accordingly we give the results of exhaustive searches
only for N = 4 and 5; and for N = 6, 7, and 8 we
merely sample for each of the # patterns of signs a certain
number of random permutations of the magnitudes.
For N ≥ 9, we abandon even the technique of con-

structing patterns of signs that are topologically distinct.
Instead we simply set the superdiagonal elements of V,
and the element VN,1, to be positive, so to ensure the
matrix contains an N -cycle; and construct each new ma-
trix to be examined by choosing a random pattern for
the remaining signs above the diagonal, and a random
permutation of the integers 1 to K for the magnitude of
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the elements above the diagonal. This will give a dif-
ferent sampling distribution over the cyclic tournament
graphs than we used for N = 6 to 8; but if our only de-
sire is to see if we can stumble on an example of some
phenomenon, that difference is irrelevant; we need only
be lucky.

III. KNOWN PROPERTIES OF RANKED PAIRS

Under Ranked Pairs and in the common case, when
the winning candidate drops the order of the remain-
ing candidates is unchanged (see Appendix A4), so the
candidate who had placed second now places first, the
candidate who had placed third now places second, and
so on. Similarly if the losing candidate drops, the order
of the remaining candidates is likewise unchanged (see
Appendix A 3), so the candidate who had placed first re-
mains placed first, the candidate who had placed second
remains placed second, and so on. This combination of
properties is called local stability [13].

As a consequence of local stability, for any candidates a
and b where a immediately precedes b in the rank order
we must have Vab > 0. That is, in an actual election,
there will always be more ballots on which a was placed
above b, than b placed above a. Or if we define a break
in a rank order as a pair of candidates a and b who are
adjacent in that rank order and for which for which Vab <
0, no rank order from Ranked Pairs has a break.

The Ranked Pairs rank order therefore represents a
Hamiltonian path in V. The Ranked Pairs algorithm in
the common case can them be reinterpreted as follows.
Start with the finite set of all the Hamiltonian paths of a
victory matrix. Alternate repeatedly searching the set of
paths for the largest element Vab for any adjacent nodes a
and b in any path, and then deleting from the set all paths
that do not include that element. When one path is left,
it will be the rank order of Ranked Pairs.

IV. KNOWN AND CONJECTURED
PROPERTIES OF BEATPATH

For N > 3 our numerical explorations of Beatpath, so
far as they have gone for tournament graphs that contain
Hamiltonian cycles, and whose victory matrices are also
in the common case, are consistent with those graphs
conforming to the following properties.

(1) Though the Beatpath rank order is not always
unique, there is always a unique winner.

(2) When the Beatpath rank order and the rank order
when the winning candidate is dropped are both unique,
then

(a) it is impossible for the candidate who had been
ranked second to become ranked last.

(b) it is impossible for the candidate who had been
ranked third to become ranked first.

(c) it is impossible for the candidate who had been
ranked second to place behind the candidate who had
been ranked third.
(d) with the exceptions of the cases covered by (a) and

(b), a not-winning candidate in any position in the orig-
inal race can come to occupy any position in the race
after the winning candidate is dropped.
(3) Among the elections for which the Beatpath rank

order is unique can be found a rank order where a break
occurs at any desired position.

Of these, the only property that has, to my knowledge,
been proved true is (2a), as a consequence of the following
more general result [3] proved by M. Schulze, which we
state as follows:

Suppose there is a unique winner in an N -candidate
election. If that winning candidate drops, no can-
didate who lost only to that winning candidate can
finish as the sole candidate in last place.

An alternative and derivative but shorter proof of the
more limited proposition (2a) is given in Appendix B.

Note that (2c) is a more general property that would
imply both (2a) and (2b).
Examples for every case of (2d) have been found by

computer search to exist for all N from 3 to 18; it is
therefore known to be true for N ≤ 18.
Otherwise exhaustive examination of all possible

common-case, tournament elections with cycles have
found all these properties hold for N = 4 and N = 5.
Beatpath, like Ranked Pairs, has inversion symme-

try [14]: if all the elements of any victory matrix change
sign, the partial order inverts also, in the sense that if
candidate j was required to precede candidate k in the
original partial order, then candidate k is required to pre-
cede candidate j in the new one. Each of the properties
(1) through (2d) above is therefore true if and only if the
following corresponding property is also true:

(1’) Though the Beatpath rank order is not always
unique, there is always a unique loser.
(2’) When the Beatpath rank order and the rank order

when the losing candidate is dropped are both unique,
then
(a’) it is impossible for the candidate who had been

ranked second to last to become ranked first.
(b’) it is impossible for the candidate who had been

ranked third-to-last to become ranked last.
(c’) it is impossible for the candidate who had been

ranked second-to-last to place ahead of the candidate who
had been ranked third-to-last.
(d’) with the exceptions of the cases covered by (a’)

and (b’), a not-losing candidate in any position in the
original race can come to occupy any position in the race
after the losing candidate is dropped.

What might be gained should these properties by
proved true?
Property (1) would allow the same tiebreaking scheme

used for Ranked Pairs (in case any of the elements of the
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victory matrix are tied, or are zero) also to give a unique
winner under Beatpath, and so provide yet another way
to resolve ties in Beatpath to give a unique winner for
every possible election. Also a proof of property (1), to-
gether with the construction in Section XII, would answer
the question of how many rank orders can be consistent
with the partial order provided by Beatpath.

Property (2c) would establish a basic structural prop-
erty of Beatpath: one could not by dropping the can-
didate placed first move the candidate placed second
below the candidate placed third. That would include
the already-established (2a), and also establish (2b). It
would have a curious practical consequence: if under
Beatpath the winning candidate is dropped, and for some
reason the candidate who was placed second is not pro-
moted to be the winner, the candidate who was placed
third could never be promoted to be the winner—only
candidates behind him in the rank order could be eligi-
ble.

Exhaustive search shows that all the properties hold
for N = 4 and N = 5, and so at least describe Beatpath
results in the general election in a “top-four” or “top-five”
system of elections; which might already be adequate for
actual practice. Even should one or more of these prop-
erties fail for some larger value of N , it would be useful
to know what it was. As it is, the following numerical
explorations show that any violation of the conjectures
has to be rare: assuming an N -candidate election man-
ifests a cycle involving all N candidates, the probability
of a violation has to be less than about 1 in a million
elections.

We now look at the results of our searches in detail in
sections V through XI for successively larger numbers of
candidates.

V. THREE CANDIDATES

Beatpath and Ranked Pairs give identical outcomes
for N ≤ 3.
There is only one cyclic tournament graph for N = 3,

which is shown in Figure 1. Any given election with this
graph will have only one of the three rank orders [1, 2, 3],
[2, 3, 1], or [3, 1, 2], but without more information than
the signs of the elements of V we cannot say which. Sup-
pose the rank order happens to be [1, 2, 3]. Then if 1
drops, the rank order will become as desired [2, 3]; and
if 3 drops, the rank order will become as desired [1, 2];
but if 2 drops, the rank order never becomes [1, 3] but
reverses, becoming [3, 1].
Any election method that produces a single rank or-

der of the candidates must contain a pair of candidates
such that candidate a is placed above b in that rank or-
der, and yet here Vab < 0; then if the third candidate c
drops out of the race, the new rank order must place b
above a. In the case of Beatpath and Ranked Pairs, this
phenomenon takes a common form, which happens to
be that if the candidate placed second drops, the candi-

date ranked first becomes ranked last, and the candidate
ranked last becomes ranked first.

VI. FOUR CANDIDATES

Here too there is only one cyclic tournament graph,
that of Figure 2. All four candidates are in a 4-cycle
of preferences; the corresponding victory matrix has the
pattern of signs · · · + + −

− · · · + +
− − · · · +
+ − − · · ·

For any N , Ranked Pairs always gives a total order of
the candidates and so a unique rank order. Beginning
with N = 4, Beatpath does not always give a total order.
Empirically, for N = 4 it is found that when the Beat-

path rank order is not unique, there are two rank or-
ders consistent with the partial order; the candidate in
first place in each is the same; and also that the candi-
date found in last place in each is the same. Those facts
are related because Beatpath has inversion symmetry, so
when V changes sign the in the partial order reverses. So
if for any N the candidates found in first place in all the
multiple rank orders match, then the candidates found in
last place in all the multiple rank orders must also match.

In 696 of the 720 elections, Beatpath yields a unique
rank order, and for these we find

B′
jk =

 · · · 672 0 24
288 · · · 384 24
480 0 · · · 216
600 96 0 · · ·

 ,

where B′
jk is the number of elections in which if the can-

didate in position j of the 4-candidate rank order drops
out, in the resulting 3-candidate rank order the candi-
date in position k of the 4-candidate rank order becomes
the winner.

If a candidate drops out, he cannot place anywhere
in the resulting smaller election, so while the diagonal
elements of B′ are all zero they are indicated by ellipses
because they are meaningless.

For the other 24 races have a partial order consistent
with two rank orders, [1, 2, 3, 4] and [1, 3, 2, 4], so there is
no doubt that candidate 1 loses and candidate 4 is last;
but there is no determining whether it is candidate 2 or
candidate 3 who would be in second place. For these 24
the ordinary expectations are met:

If the candidate in first place drops, the new winner is
always one of the candidates in original second or third
place; the other is second, and the original loser is third.

If one of the tied candidates 2 or 3 drops, the new
winner is always the original winner; the survivor of the
tied candidates is second, and the original loser is third.

If the candidate in fourth place drops, the new winner
is always the original winner, and the tied candidates
follow as second and third.
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Roughly speaking, these facts suggest we should say
that for these 24 cases the matrix that corresponds to B′

jk
may be taken to be

B′′
jk =

 · · · 24 0 0
24 · · · 0 0
24 0 · · · 0
24 0 0 · · ·

 ;

that is, we either elect the original winning candidate, or
if he is the one to drop, a candidate originally tied for
second. If we do this, for the 720 elections in total we
would have

B = B′ +B′′ =

 · · · 696 0 24
312 · · · 384 24
504 0 · · · 216
624 96 0 · · ·

 .

For Ranked Pairs the tabulation is without ambiguity,
because it always yields a single rank order without ties;
and the corresponding matrix is

R =

 · · · 720 0 0
336 · · · 336 48
432 48 · · · 240
720 0 0 · · ·

 .

Ranked Pairs is leader drop-steady: if one drops the win-
ner, the remaining rank order doesn’t change, so natu-
rally since in row 1 we are dropping the winning candi-
date, the second candidate must win. Hence R1,2 = 720,
and the other zeros in that row are explained. Ranked
Pairs is also trailer drop-steady; if one drops the loser, the
remaining rank order doesn’t change, so naturally since
in row 4 we are dropping the losing candidate, the origi-
nal first candidate must win. Hence R4,1 = 720, and the
other zeros in that row are explained. So no zeros have
been found that are not tied to some deeper property of
Ranked Pairs.

Overall, which pattern for 4 candidates, that of Beat-
path or of Ranked Pairs, could be said to be better?
Suppose for the sake of argument that it is equally likely
that any one of the four candidates will drop. The natu-
ral candidate to be elected is then the one in first place,
if he is not dropped; otherwise the candidate in second
place. There are 4 × 720 = 2880 cases of dropping a
candidate; Beatpath departs from electing the natural
candidate in

24 + (384 + 24) + 216 + 96 = 744

cases. Ranked Pairs departs from electing from electing
the natural candidate in

0 + (336 + 48) + (48 + 240) + 0 = 672

cases. Numerically that is not enough of a difference to
care about, though it is marginally in favor of Ranked
Pairs.

Now suppose we try a weighting; suppose is not merely
the fact of a failure to elect the natural candidate, but

we should weight each by the difference between what
happened and electing the natural candidate; so electing
a second-place candidate instead of a first costs 1, but
electing a fourth-place candidate when electing a first is
possible (that is, we didn’t drop the first) will cost 3, and
electing a fourth-place candidate when electing a second
is possible (that is, we dropped the first) will cost 2. Then
the weighted cost of Beatpath is

(24×2)+(384×2)+(24×3)+(216×3)+(96×1) = 1632

while the weighted cost of Ranked Pairs is

(336× 2) + (48× 3) + (48× 1) + (240× 3) = 1584 ,

which numerically is also not enough of a difference to
care about, though it too is marginally in favor of Ranked
Pairs.

If what is shocking is the mere fact that the candidate
ranked fourth could be elected at all, then Beatpath is
better, since the number of cases where that occurs is

24 + 24 + 216 = 264 ,

while for Ranked Pairs it is

48 + 240 = 288 .

If we weight, under Beatpath the harm is

2× 24 + 3× 24 + 3× 216 = 768 ,

while for Ranked Pairs the harm is

2× 0 + 3× 48 + 3× 240 = 864 .

Both of these differences too are not enough to care
about, though both are marginally in favor of Beatpath.

A. A deeper look at Beatpath for N = 4

For the 696 elections where for N = 4 Beatpath yields
a single rank order, we can look at where each candi-
date places depending on which candidate is dropped.
Let Mnm indicate the number of times the candidate in
position m of the 4-candidate rank order winds up in a
particular place in the three-candidate-rank order, when
the candidate in position n of the 4-candidate rank order
drops. The various matrices M are

· · · 672 0a 24
288 · · · 384 24
480 0b · · · 216
600 96 0c · · ·

to place #1 of three

· · · 24 600 72
192 · · · 312 192
192 312 · · · 192
72 600 24 · · ·

to place #2 of three
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· · · 0c 96 600
216 · · · 0b 480
24 384 · · · 288
24 0a 672 · · ·

to place #3 of three

The first matrix is a repeat of B′.
These matrices have manifest symmetries when the po-

sition of the elements are inverted with respect to a point
in the center of the matrix: the first becomes the third,
the third becomes the first, and the second matrix returns
to itself. These symmetries result from Beatpath, like
Ranked Pairs, having inversion symmetry: if we change
the sign of the victory matrix V, the rank order under
Beatpath reverses.

For example, consider the 0c in position 1, 2 of the third
matrix, which says that there were zero examples when
dropping the candidate in first place in a 4-candidate
race make the candidate in second place appear last in
the resulting 3-candidate race. Suppose there were an
example, when for some V and for candidates A, B, C
and D we had a change in rank order such as

[A,B,C,D] → [C,D,B] .

Changing the sign of V reverses the rank order of both
elections, and so for −V we would have

[D,C,B,A] → [B,D,C] .

But this is an election where dropping the candidate who
placed last makes the candidate who placed third ap-
pear first in the resulting 3-candidate race. And therefore
there would also have to be an example in position 4, 3 of
the first matrix, as well. Thus the zeros marked 0c in the
first and third matrices are related. Similar arguments
relate the pair of zeros marked 0a, and the pair of zeros
marked 0b.
Separate testing all of the cases when the first can-

didate drops shows that in the resulting three-candidate
election the candidate who had placed second has to con-
tinue to precede the candidate who had placed third.

From this more general property, the zero 0a in po-
sition (1, 3) of the first matrix follows—of course, the
candidate who ranked third could never be promoted to
first, because he would then place ahead of all the remain-
ing candidates, including the candidate who had placed
second. It would also follow that if we dropped the first
candidate, that the candidate who had placed second can
never become ranked last, because he would have to con-
tinue to precede the candidate who had placed third, and
so the 0c in position (1, 2) of the third matrix would fol-
low.

The zeros θa and θc have their analogs for elections
with more candidates; but the zeros θb do not. That
for N = 4 it is true that if the candidate placed third
drops, the candidate who had been placed second is never
promoted to being ranked first, such a restriction does
not appear for N = 5.
The second matrix shows that any of the surviving

candidates can come to occupy second place, whichever
of the candidates in the 4-candidate race one drops.

M. Schulze has shown that property tied to the zero θc
generalizes. The part of his result [3] relevant here is that
for any N , an election with a single rank order cannot, if
the candidate placed first drops, give a single rank order
with the candidate who had placed second now in last
place.
For N = 4 a sample of matrices that when the winning

candidate drops, put each of the remaining candidates
into the new rank order in each of the places possible,
appear in Appendix C.

VII. FIVE CANDIDATES

There are six distinct cyclic tournament graphs that
contain a 5-cycle, which are shown in Figures 3 through 8.
As it happens, if we run through all 10! = 3628800 per-
mutations of the 10 distinct magnitudes of the above-
diagonal elements for each of these six, it proves that un-
der Beatpath there is, as there is under Ranked Pairs, al-
ways a unique winner, though the partial order provided
by Beatpath can be consistent with more than one rank
order. Running Beatpath to determine the outcomes for
all elections took 34, 000 s on my laptop.
For none of the six graphs is having 7 or more rank

orders possible; that 6 can be achieved is shown by the
construction in Section XII. The complete breakdown of
the number of rank orders that are consistent, for each
of the graphs in Figures 3 through 8 in order by row, are

1 2 3 4 5 6
Fig. 3 3274559 285120 0 64800 0 4320
Fig. 4 3496319 118080 0 14400 0 0
Fig. 5 3386879 213120 0 28800 0 0
Fig. 6 3481919 69120 0 73440 0 4320
Fig. 7 3496319 112320 0 20160 0 0
Fig. 8 3427199 187200 0 14400 0 0

Since for 4 and for 5 candidates there is always a unique
winner (and by inversion symmetry, always a unique
loser), we may examine all the elections to see in how
many elections, if the candidate ranked first among the
five drops, the candidate ranked last among the five is
promoted to be first among the remaining four. The to-
tals are

3 52592
4 31840
5 64116
6 62436
7 47308
8 74180

of the 3628800 elections per graph.

We can also pose the following question. For each of
the six graphs, if the five-candidate election yields a sin-
gle rank order, and if when the candidate who placed
first drops, the four-candidate election that results also
yields a single rank order, how many times does a candi-
date who placed first through fifth in the five-candidate
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race appears in each of the four positions first through
fourth in the four-candidate race? Obviously the can-
didate dropped places in any position 0 times; we will
indicate such trivial zeros by ellipses. We find

graph 3, sample size 3274559
· · · · · · · · · · · ·

3160719 94400 19440 0
0 2941719 163160 169680

64848 132672 2739303 337736
48992 105768 352656 2767143


graph 4, sample size 3474719

· · · · · · · · · · · ·
3389759 69440 15520 0

0 3213119 155600 106000
53120 123760 3097559 200280
31840 68400 206040 3168439


graph 5, sample size 3354031

· · · · · · · · · · · ·
3215219 131308 7504 0

0 2976175 283968 93888
76400 176144 2875395 226902
62412 70404 187164 3034051


graph 6, sample size 3481919

· · · · · · · · · · · ·
3364019 89144 28656 0

0 3199559 107784 174576
59136 135336 3048323 239124
58764 57780 297156 3068219


graph 7, sample size 3463223

· · · · · · · · · · · ·
3343163 103164 16896 0

0 3148223 198256 116744
73376 158200 3056451 175196
46684 53636 191620 3171283


graph 8, sample size 3369719

· · · · · · · · · · · ·
3210099 151300 8320 0

0 2994879 266640 108200
854440 171360 2905739 207180
74180 52180 189020 3054339


The number of elections sampled for each of the six

graphs in such a sample varies, because for each pattern
of signs the number of elections that give a unique rank
order for the five candidates, and a unique rank order
when the winning candidate is dropped, happens to vary.

The tableaux for the different graphs for N = 5 mani-
fest no individual structures, so we sum these cases into

a single array of all 20 418 176 elections where a single
rank order results both in the original election and the
election when the winning candidate is dropped:

all graphs 3 through 8: B(5) =
· · · · · · · · · · · ·

19682984 638856 96336 0
0 18473680 1175408 769088

412320 897472 17722776 1385608
322872 408168 1423656 18263480


That in these samples it is impossible to have the sec-

ond of the five candidate emerge as the fourth of the four
is expected from Schulze’s theorem. That in these sam-
ples it is impossible for the third of the five candidates
to emerge as the first of the four may be new.
Both follow from the following more general property,

which exhaustive search showed is true in every common-
case election for n = 5: when the rank order for the
five candidates is unique, and the rank order when the
winning candidate is dropped is unique, the candidate
who had placed second always precedes in the new rank
order the candidate who had placed third.
We note that aside from that constraint, when the can-

didate who placed first is dropped, any of the candidates
not dropped appear anywhere in the new rank order; in
particular the candidate originally ranked fifth and last
can be promoted to be ranked first.
That being so, the most extreme change would be to

have the candidate who was ranked last promoted to be-
ing ranked first, while simultaneously having the candi-
date who was ranked second demoted to being ranked
third, and the candidate who was ranked third demoted
to being ranked fourth and last; that is, to have a
rank order 1 2 3 4 5 change to 5 4 2 3. However exhaus-
tive search proves this to be impossible in the common
case for N = 5.
For breaks in the Beatpath rank order, the smallest

possible number of breaks is 0, and the largest possible
(whether or not it can be achieved) is N − 1. The distri-
bution of the number of breaks from 0 to 4 is

[12 929 760, 6 394 560, 1 238 880, 0, 0] ,

and the number of times a break in each position from j =
1 to 4 occurred has the distribution

[3 289 920, 1 146 240, 1 146 240, 3 289 920] .

Breaks may therefore occur anywhere in a rank order;
and we note a substantial fraction

3 289 920
/
20 418 176 = 16.1%

occur annoyingly between the candidates placed first and
second, where they are sure to occasion controversy, as
the supporters of the candidate placed second point out
that a majority of the voters prefer him to the candidate
who placed first.
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For N = 5 a sample of matrices that when the winning
candidate drops, put each of the remainging candidates
into the new rank order in each of the places possible,
appear in Appendix C.

VIII. SIX CANDIDATES

We run 200 000 permutations of the magnitudes of the
elements of V for each of the 35 patterns of signs, and
so 7 500 000 elections under Beatpath; this many elec-
tions took 16, 000 s to analyse. All the elections that had
multiple rank orders yielded both a single winning and a
single losing candidate. This being so, the largest num-
ber of rank orders that could be found, according to the
arguments in Section XII, is 4! = 24; elections were found
with that number, but none with more.

Of the 7 500 000 elections, 6 413 133 yielded a single
election rank order. Define a break as in Section VII; the
distribution of these elections over the number of breaks,
from 0 to 5, was

[3 231 183, 2 382 843, 715 641, 83 466, 0, 0] ,

so that the largest number of breaks found was 3. Also of
interest is the distribution of the locations of the breaks;
evidently we can have multiple breaks in any one rank
order. Let us count the number of times a break occurs
between the candidates who placed as j and as j + 1
in the rank order, for j ranging from 1 to N − 1. The
number of occurrences of each kind of break was

[1 190 162, 610 871, 463 028, 611 621, 1 188 841] .

So breaks may occur anywhere; and a substantial fraction

1 190 162
/
6 413 133 = 18.8%

occur annoyingly between the candidates placed first and
second, where they are sure to occasion controversy.

Of the elections studied 6 342 540 both yield a single
rank order and, when the winning candidate is dropped,
have the resulting election also yield a single rank order.
In none of these did the candidate who originally placed
third precede the candidate who originally placed second.
From this observation we can conclude that in our sample
the candidate who originally placed third cannot become
placed first, and the candidate who originally placed sec-
ond cannot become placed last. The new position of the
candidate who had placed third, minus the new position
of the candidate who had placed second, runs from 1 to
a maximum of 4; and the distribution of elections over
those values runs

[6 034 495, 164 857, 81 141, 62 047] .

So while the candidate who had placed third must con-
tinue to be placed behind the candidate who had placed
second, he may appear anywhere behind.

In our sample of elections, 6 342 540 had both a
unique rank order and, when the winning candidate was
dropped, that election too had a unique rank order. The

following table B
(6)
jk indicates, for the candidate who

placed in position j in the original election, the posi-
tion k in the second election where that same candidate
placed; j runs 1 to 6, and k from 1 to 5.

B(6)=


· · · · · · · · · · · · · · ·

6135468 170359 28798 7915 0
0 5859509 289994 104125 88912

84132 171358 5715280 254149 117621
66598 88029 232177 5652882 302854
56342 53285 76291 323469 5833153


For N = 6 a sample of matrices that when the winning

candidate drops, put each of the remaining candidates
into the new rank order in each of the places possible,
appear in Appendix C.

IX. SEVEN CANDIDATES

We run 20 000 permutations of the magnitudes of the
elements of V for each of the 353 patterns of signs, and
so 7 060 000 elections under Beatpath; this many elec-
tions took 22, 000 s to analyze. All the elections that
yield multiple rank orders yielded both a single winning
candidate and a single losing candidate. That being so,
the largest number of rank orders that could be found,
according to the arguments in Section XII, is 5! = 120;
elections were found with a number of rank orders equal
to 60, but none with more; a cautionary result, showing
that because a random search fails to find an example of
case, that does not mean it is not there to be found.
Of the 7 530 000 elections, 6 267 735 yielded a single

rank order. Define a break as in Section VII; the dis-
tribution of these elections over the number of breaks,
from 0 to 6, was

[2 443 302, 2 508 429, 1 076 332, 220 876 , 18 796, 0, 0] ,

so that the largest number of breaks found was 4. Also
as in Section VII of interest is the distribution of the
locations of the breaks; the number of elections that had
a break in any of the six possible places from 1 to 6 was

[1 294 551, 816 145, 588 857, 588 137, 816 302, 1 294 913] .

So breaks may occur anywhere; and a substantial fraction

1 294 551
/
6 267 735 = 20.7%

occur annoyingly between the candidates placed first and
second, where they are sure to occasion controversy.
Of the elections studied 6 180 575 both yield a single

rank order and, when the winning candidate is dropped,
have the resulting election also yield a single rank order.
In none of these did the candidate who originally placed
third precede the candidate who originally placed second.
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It follows from this observation that in our sample
the candidate who originally placed third cannot become
placed first, and that the candidate originally placed sec-
ond cannot become placed last. The new position of the
candidate who had placed third, minus the new position
of the candidate who had placed second, runs from 1 to
a maximum of 5; and the distribution of elections over
those values runs

[5 948 981, 119 441, 51 222, 32 829, 28 102] .

So while the candidate who had placed third must con-
tinue to be placed behind the candidate who had placed
second, he may appear anywhere behind.

In our sample of elections, 6 180 575 had both a
unique rank order and, when the winning candidate was
dropped, that election too had a unique rank order. The

following table B
(6)
jk indicates, for the candidate who

placed in position j in the original election, the posi-
tion k in the second election where that same candidate
placed; j runs 1 to 7, and k from 1 to 6.

B(7) =

· · · · · · · · · · · · · · · · · ·
5997358 147452 25020 7882 2863 0

0 5791650 234734 72011 42106 40074
57574 113714 5693245 209846 63219 42977
44324 59278 147658 5655205 197996 76114
44133 41673 54900 186674 5634775 218420
37186 26808 25018 48957 239616 5802990


For N = 7 a sample of matrices that when the winning

candidate drops, put each of the remaingfng candidates
into the new rank order in each of the places possible,
appear in Appendix C.

X. EIGHT CANDIDATES

We run 1000 permutations of the magnitudes of the
elements of V for each of the 6008 patterns of signs, and
so 6 008 000 elections under Beatpath; this many elec-
tions took 26, 000 s to analyze. All the elections that
yield multiple rank orders yielded both a single winning
candidate and a single losing candidate. That being so,
the largest number of rank orders that could be found,
according to the arguments in Section XII, is 6! = 720;
but none such were found in the sample

Of the 6 008 000 elections, 5 154 026 yielded a single
rank order. Define a break as in Section VII; the dis-
tribution of these elections over the number of breaks,
from 0 to 7, was

[1 507 417, 2 050 196, 1 181 668, 355 396,

55 597, 3 752, 0, 0] ,

so that the largest number of breaks found was 5. Also
as in Section VII, of interest is the distribution of the
locations of the breaks; the number of elections that had
a break in any of the five possible places from 1 to 7 was

[1 165 531, 828 992, 605 510, 522 197,

604 432, 826 967, 1 167 239] .

So breaks may occur anywhere; and a substantial fraction

1 165 531
/
5 154 026 = 22.3%

occur annoyingly between the candidates placed first and
second, where they are sure to occasion controversy.
Of the elections studied 5 075, 863 both yield a single

rank order and, when the winning candidate is dropped,
have the resulting election also yield a single rank order.
In none of these did the candidate who originally placed
third precede the candidate who originally placed second.
It follows from this observation that in our sample

the candidate who originally placed third cannot become
placed first, and that the candidate originally placed sec-
ond cannot become placed last. The new position of the
candidate who had placed third, minus the new position
of the candidate who had placed second, runs from 1 to
a maximum of 6; and the distribution of elections over
those values runs

[5 948 981, 119 441, 51 222, 32 829, 28 102] .

So while the candidate who had placed third must con-
tinue to be placed behind the candidate who had placed
second, he may appear anywhere behind.
Also of the 6 008 000 elections, 5 075, 863 both yield

a single rank order and, when the winning candidate is
dropped by overwriting the victory matrix to make that
candidate a Condorcet loser, has the resulting election
also yield a single rank order. In none of these did the
candidate who originally placed third precede the candi-
date who originally placed second.
It follows from this observation that the candidate who

originally placed third cannot become placed first, and
that the candidate originally placed second cannot be-
come placed last. The new position of the candidate who
had placed third, minus the new position of the candi-
date who had placed second, runs from 1 to a maximum
of 6; and the distribution of elections over those values
runs

[4 927 767, 75 154, 28 558, 17 338, 14 303, 12 743] .

In our sample of elections, 5 075, 863 had both a
unique rank order and, when the winning candidate was
dropped, that election too had a unique rank order. The

following table B
(8)
jk indicates, for the candidate who

placed in position j in the original election, the posi-
tion k in the second election where that same candidate
placed; j runs 1 to 8, and k from 1 to 7.



11

B(8) =



· · · · · · · · · · · · · · · · · · · · ·
4939364 108829 18014 5917 2620 1119 0

0 4808710 163933 43885 23194 18096 18045
34287 65225 4750997 149352 38940 20406 16656
25209 34176 82586 4728982 141905 39000 24005
26022 24861 32421 103190 4707090 134226 48053
27723 20278 18478 32388 132025 4699521 145450
23258 13784 9434 12149 30089 163495 4823654



XI. NINE TO EIGHTEEN CANDIDATES

For N from 9 to 18, numerical explorations show that
when the N -candidate rank order is unique, and so is
the rank order when the winner is dropped, that for
some election the candidate in 2nd through N th place
in the original election will occupy any of the places 1st

through (N − 1)th in the following election—except that
the candidate who placed second cannot become last,
and the candidate who placed third cannot become first.
These results are consistent with the conjecture the can-

didate who placed second always in the following election
coming to place ahead of the candidate who placed third;
a conjecture which was true in every election looked at,
but which is of course not proved true by such tests.
As an example, over a sample of 200 000 elections

with N -cycles for N = 15, I found 126 804 where the
rank orders for the full election was unique, and the elec-
tion when the winning candidate was dropped; and the
various surviving candidates had the following distribu-
tion B(15) over their place in the second election; the only
zeros are the two bolded ones. I would report the results
for N = 18 instead, but that matrix would spill over the
margins.



· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
125284 1289 161 29 18 3 1 6 2 4 3 1 3 0

0 124420 1763 269 75 31 19 18 13 19 25 32 51 69
126 305 124143 1721 259 66 45 20 22 17 12 20 24 24
79 109 309 124136 1707 276 63 26 18 16 15 11 16 23
59 68 106 349 124124 1666 246 63 37 24 24 14 12 12
39 49 53 97 374 124099 1655 243 62 35 27 31 21 19
64 50 44 42 109 432 124010 1608 226 76 46 37 32 28
75 42 29 36 39 112 505 123876 1574 257 110 56 45 48
104 62 41 24 29 42 147 637 123642 1510 249 157 91 69
117 76 42 30 27 29 58 186 844 123281 1463 298 197 156
152 88 39 24 20 18 28 72 236 1166 122817 1438 429 277
198 91 26 22 9 19 21 30 83 299 1591 122170 1542 703
242 81 29 16 4 8 4 16 36 82 336 2206 121685 2059
265 74 19 9 10 3 2 3 9 18 86 333 2656 123317


As one can see, for a large number of candidates N by far the most common occurrence when the candidate placed
first drops out is for the candidate who had placed in position k to move up to position k − 1. Except for it being
impossible for the candidate who had been ranked third to precede the candidate who had been ranked second, which
accounts for the two bolded zeros, any candidate can come to place anywhere in the new rank order, from first to
last; though some shifts are observedly less probable than others.

XII. INDETERMINACY IN THE BEATPATH
RANK ORDER

It seems that in the common case that while Beatpath
can support multiple rank orders, it always has a unique
winner and a unique loser. If so, then the most inde-

terminate an election can be is to have one candidate
placed first, one placed last, and all the remaining candi-
dates tied for second. A victory matrix V that achieves
that result for given N can be constructed by filling the
above-diagonal elements as follows.

Fill the row elements V1,k to V1,N−1 left to right with
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consecutive decreasing integers, starting with N(N −
1)/2. Continue to fill the column elements VN−1,N

to V1,N bottom to top with decreasing integers. Fill the
remaining above-diagonal elements with decreasing inte-
gers, first by column left to right, and then by row top to
bottom. The above-diagonal elements are presently the
positive integers 1 to N(N − 1)/2; change the sign of the
one corner element V1,N to make it negative. Now com-
plete V to render the matrix antisymmetric. This victory
matrix will have candidate 1 win, candidate N lose, and
have the rest of the candidates tied in-between. (In fact
the way one orders the integers in the row and column,
so long as the element (N2 − 5N + 8)/2 remains in the
upper-right corner, doesn’t matter; and neither does the
order one fills the triangle with the smaller integers.) For
example for N = 6 the victory matrix is

V =


0 15 14 13 12 −7

−15 0 6 5 4 8
−14 −6 0 3 2 9
−13 −5 −3 0 1 10
−12 −4 −2 −1 0 11

7 −8 −9 −10 −11 0

 ,

which gives for the matrix giving the strength of the
strongest paths just

Q =


0 15 14 13 12 11
7 0 7 7 7 8
7 7 0 7 7 9
7 7 7 0 7 10
7 7 7 7 0 11
7 7 7 7 7 0

 ,

and the partial order

A =


0 1 1 1 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0

 .

This construction shows how to construct a common-
case victory matrix where the outcome under Beatpath
is consistent with (N − 2)! rank orders. If it is true that
Beatpath in the common case gives a unique winner and
a unique loser in every election, then this is the largest
number achievable.

XIII. DISCUSSION

Of what practical significance are the results in this
paper for running mass popular elections using ranked-
choice ballots?

Little; for any difference in the winner of a multi-
candidate election under Ranked Pairs or under Beatpath
will require the four (or more) leading candidates to be
in a cycle of preferences (technically, for the Smith set of

the election to feature 4 or more candidates). That will
be a very rare form of election; so rare that choosing the
best possible method to resolve the cycle and to choose
a winner is of vastly less practical importance than cor-
rectly deciding garden-variety, three-candidate elections,
even those few that might feature a cycle.

The subject having been raised, however: Ranked
Pairs is better than Beatpath in this minor respect. It is
plainly a useful property to have a guarantee that if the
winning candidate drops, the order of the rest of the can-
didates cannot change, to ensure promoting the second-
place candidate to first; and to have the parallel guaran-
tee that if the losing candidate drops, the order of the
rest of the candidates cannot change, ensuring we have
the same winner as before.

And those properties Ranked Pairs has. Our examina-
tion of what can happen under Ranked Pairs and Beat-
path in the case of 4 candidates, when any one of the
candidates drops, did not reveal any measurable cost to
using Ranked Pairs over Beatpath, so these properties
can be had for essentially nothing.

Indeed, keeping these properties avoids ever having to
explain why candidate A was elected instead of candi-
date B, who came second in the rank order, in the case
when more voters preferred candidate B to A, than pre-
ferred A to B. While any four-cycle would be a rare
event, the political penalty for having that event occur
under Beatpath might be dire: it could call into question
the legitimacy of an entire system of elections, if not in-
deed become a matter for revolution. Imagine the furor
if in the United States we ever elected Donald Trump
president over Joe Biden, or Biden over Trump, in a
four-candidate election when a majority of the electorate
indisputably and on record preferred his rival.

Not that Ranked Pairs cures all furor. Any election
system that declares a rank order of the candidates in
an election where the Smith set numbers 3 or more must
declare some candidate to be higher in the rank order
than another candidate who beat him, in the sense that
a majority of the voters preferred the latter candidate to
the former. But there are two significant advantages to
using Ranked Pairs.

First, such a reversal does not affect candidates ad-
jacent in the rank order; if I want to move above some
candidate I beat, there is always some candidate between
us in the rank order who beat me, in the sense that a
majority of voters preferred him to me; and if I am to
claim to be the proper winner I must also explain why
I should place above that candidate. That will not be
easy; the nature of Ranked Pairs is that if y beats x,
and y trails x in the rank order, then for all the inter-
vening candidates a1, a2, · · · an in the rank order, that
not only does y beat a1, and a1 beat a2, down to an
beating x, but the margin of each of these contests is
necessarily greater than the margin by which y beat x; a
fact which undermines the credibility of the claim that y
should place in the rank order above x.

Last, one must win a battle for the hearts and minds
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of voters either to see adopted or to maintain as adopted
an election system that uses either Ranked Pairs or Beat-
path. It is of course possible to define Beatpath only to
declare a winner, and so to make no statement about the
relative merits of the other candidates; but a system in-
capable of weighing those relative merits forfeits a great
deal of popular legitimacy (in my view) to any method
such as Ranked Pairs that can.

And if Beatpath is used to determine a rank order,
it is not helpful, to win the hearts and minds of voters,
to have to explain that if the winning candidate drops,
that the hitherto losing candidate can come to be placed
anywhere, including first; or that the candidate hitherto
ranked second can come to be placed anywhere down to
second-to-last.

It is true he cannot come to be placed last, but even
that feature seems to be undercut; if it proves true, as
our computer investigations suggest, that the candidate
hitherto ranked third must always follow in the new rank
order the candidate hitherto ranked second rank order,
then the third-ranked candidate can never come to win.
So whenever the candidate ranked second comes to be
placed second-to-last, one must not only suffer the elec-
tion of a candidate hitherto ranked at best as fourth, but
the candidates hitherto ranked as second and third are
both at the bottom of the rank order, respectively ranked
last and second-to-last.

There is a truism among air-transport companies that
if a passenger pulls down the tray in front of his seat
and finds a coffee ring, he judges the company doesn’t
maintain its engines properly. People assess the worth
of things too complicated for them to understand fully
by the parts of them they think they do understand. I
for one would not wish to persuade voters to adopt an
election system by a campaign in which I would have
to explain or excuse outcomes that are unimpeachably
possible and strike voters as crazy. Particularly if my
opponents could correctly point out I could have tried
to pass a system like Ranked Pairs that was at least no
worse in every other respect, and often better, and that
avoided the apparently crazy outcomes.

There is another truism that in politics, if you are ex-
cusing, you are losing.

Appendix A: Proofs concerning Ranked Pairs

In this appendix we provide for the reader’s conve-
nience proofs of pertinent results concerning Ranked
Pairs that are almost folk-theorems, in that the easiest
way to prove them isn’t immediately obvious, but once
found it is simple enough that it is often omitted from
academic publications. The proofs in the separate sec-
tions can be read independently, except that the result
that Ranked Pairs has inversion symmetry (A 2) we use
to prove it is also leader drop-steady (A 4).

1. Proofs that Ranked Pairs is both Smith
and ISDA

Recall that Ranked Pairs works from the antisymmet-
ric victory matrix V, where Vjk is the number of ballots
on which candidate j is placed above candidate k, mi-
nus the number on which k is placed above j. Ranked
Pairs collects all the non-diagonal elements Vjk that are
positive, and puts the corresponding pairs (j, k) in a list
sorted in order of decreasing size of Vjk. Ranked Pairs
then builds an accepted list of pairs, initially empty, such
that an accepted pair (j, k) means that candidate j will
precede candidate k in the final rank order of the candi-
dates. Each pair in the sorted list is considered in turn
to be added to the accepted list. A pair is added un-
less it would create in the accepted list some cycle or
loop of preferences (for example that j would precede k,
and k would precede l; but the new pair would have that l
precede j), whereupon that pair would be rejected and
the next pair on the sorted list considered. When all the
pairs on the sorted list have been considered, the pairs on
the accepted list will be consistent with only one (total)
order of the candidates, which becomes the rank order
produced by Ranked Pairs.
The Smith set is the smallest nonempty set of candi-

dates S such for every candidate j in S and every candi-
date k not in S, we have Vjk > 0.

Claim. In Ranked Pairs no candidate in not-S can ever
precede in the rank order any candidate in S.

Proof. If k is in not-S and j is, clearly the algorithm
can never impose that k precede j by means of accepting
the pair (k, j), because Vkj < 0 and so the pair (k, j)
could never even appear on the sorted list. Therefore
that k must precede j would have to be imposed indi-
rectly by rejecting the pair (j, k), which does appear on
the sorted list. But that rejection could happen only if
the acceptance of the pair (j, k) would create a cycle or
loop of preferences in the accepted list. Such a loop would
have to include a candidate in S, at least one transition
from a candidate in S to a candidate not in S (or the
loop could not include k), and then at least one transi-
tion from a candidate not in S back to a candidate in S
(or the loop could not include j).
But no pair from not-S to S will ever on the sorted list

to begin with, because for any such pair (b, a) we must
have Vba < 0. Therefore every candidate in S precedes
any candidate in not-S. •
Therefore Ranked Pairs is Smith [5]. A similar ar-

gument shows Ranked Pairs is independent of Smith-
dominated alternatives. For we have the following.

Claim. The rank order of the candidates in the Smith
set is independent of the presence on the ballot of any
candidates not in the Smith set.

Proof. Suppose when only the candidates in the Smith
set are present on the ballot, that candidate a1 precedes
in the rank order candidate a2. Now add to the ballot
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all the candidates not in the Smith set. The pair (a1, a2)
remains on the list of sorted pairs; to change the rank
order so that a2 instead precedes a1, that pair must be
rejected. That is possible only if there is some candidate b
in not-S so that if the pair (a1, a2) is accepted, then in
the accepted list a cycle or loop or preferences would be
created. Such a loop would have to run from a1 to a2,
and include a transition from a candidate in S to a candi-
date in not-S (or the loop could not include b), and also
include a transition from not-S to S (or the loop could
not enter S to close the loop on a1).
But as we have seen no pair from not-S to S could ever

appear on the sorted list to begin with; and therefore
no such loop is possible. Therefore in the presence of
the candidates in not-S, candidate a1 must continue to
precede a2. Therefore the order of the candidates in S is
independent of the presence of any candidates in not-S. •

2. Proof that Ranked Pairs has Inversion
symmetry

An election method whose sole rank order depends
only upon the victory matrix is said to have inversion
symmetry if, when the victory matrix changes sign, the
rank order of the candidates reverses; this if V provides
the rank order ABCD, then −V provides the rank or-
der DCBA.

In the common case, the sole effect of changing the
sign of V is to replace each pair of candidates (a, b) on the
sorted list with its reversal, (b, a). As the Ranked Pair al-
gorithm proceeds, pairs fail to be added to the accepted
list only if they would create a loop or cycle of prefer-
ences; but if (x, y) would create a cycle in the original
acceptance list, (y, x) must create a cycle in the accep-
tance list with pairs on it all reversed. So a pair (x, y) is
accepted under V if and only if the pair (y, x) is accepted
under −V. Therefore when V changes sign, the only ef-
fect is that any constraint that x precede y in the rank
order is replaced with the constraint that y precede x;
and therefore the rank order must reverse. •

3. Proof that Ranked Pairs is trailer drop-steady

An election method whose sole rank order depends
only upon the victory matrix is said to be trailer drop-
steady if, when the candidate last on the rank order is
dropped from the election, and so when the correspond-
ing row and column for that candidate in the victory
matrix are deleted, the rank order for the remaining can-
didates is unchanged.

Under Ranked Pairs, a candidate x can become ranked
last if and only if either there are no pairs on the sorted
list of the form (x, a), where a is any other candidate;
or if there are, then in each case the acceptance list has
evolved so that the pair (x, a) cannot be accepted. There-
fore the rank order would not change had we deleted all

the pairs (x, a), if any, from the sorted list from the be-
ginning. That being so, the only effect of the pairs on
that list of the form (a, x) is to ensure that x is ranked
behind all the candidates a; those pairs have no effect on
the order of the candidates a among themselves, because
without any pairs of the form (x, a) there are no loops
that could form in the acceptance list that involve x.
Therefore the order of the candidates a would be the
same if all the pairs that involve x had been deleted from
the sorted list; which is the effect of deleting the row and
column in V that affect x. •

4. Proof that Ranked Pairs is leader-drop-steady

An election method whose sole rank order depends
only upon the victory matrix is said to be leader drop-
steady if, when the candidate first on the rank order is
dropped from the election, and so when the correspond-
ing row and column for that candidate in the victory
matrix are deleted, the rank order for the remaining can-
didates is unchanged.
Any example of Ranked Pairs failing to be leader drop-

steady would, using its inversion symmetry (see Ap-
pendix A 2), become an example of Ranked Pairs fail-
ing to be trailer drop-steady; for example, if ABCD
when A dropped produced not BCD but say CDB, then
on changing the sign of V we would have DCBA when A
dropped producing notDCB but BDC. Because Ranked
Pairs is trailer drop-steady (A 3), it is therefore leader
drop-steady as well. •

Appendix B: Variant proof of Schulze’s theorem
concerning Beatpath

In this appendix we present the alternative and deriva-
tive proof, mentioned in Section IV, of the limited form
of a theorem proved by M. Schulze [3]. In this appendix,
for one candidate to “beat” another means that the one
must precede the other in the partial order computed by
Beatpath.

Theorem. Suppose the number of candidates N is 3 or
more. Suppose that under Beatpath

(a) Candidate a beats all other candidates;
(b) Candidate b beats or ties all other candidates but a.
Then if candidate a drops, in the smaller election can-

didate b must beat at least one candidate.

We will need the following lemma.

Lemma. For any election we claim that we can construct
a set of N(N −1)/2 paths, one running from candidate j
to candidate k for any such pair of candidates, such that
the strength of each path equals the greatest strength for
any possible path running from j and k; and such that
the paths nest, in the following sense: in the string of
consecutive nodes in the path running from j to k, any
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consecutive substring is also one of the N(N−1)/2 paths
in the set.

Proof. To construct such a set, denote the different
candidates by distinct letters. Note that in any path we
can excise any stretch of candidates that appear between
a pair of candidates that are the same, without diminish-
ing the strength of the resulting path, e.g., we can have
all the following three kinds of contractions:

jcdejfk → jfk

jcedfcgk → jcgk

jcdekfgk → jcdek

Therefore to find all the strongest path from j to k, we
need examine only a finite set. We can thus find all the
paths from j to k of (equal) greatest strength; of these,
select a path with the fewest candidates between j and k.
Should more than one path tie both for greatest strength
and for having the fewest candidates, the paths have the
same length; sort the paths into alphabetical order, and
choose the path at the head of the list. Thus if jdek,
jdfk, and jchk so tie, choose the path jchk.
The collection of single paths, one for each j and k,

is our desired set. To show this, we test for nesting all
the two-element, then three-element, then four-element
paths, and so on; and within each group, test that the
paths sorted alphabetically.

Consider a two-candidate path ef . Clearly that path
cannot reoccur among any other of the two-candidate
paths. Can the candidates e and f occur separated
by some other candidate or candidates in some path of
greater length, as in jceghf ik? Clearly not, because ef
has the greatest strength of any path between e and f , so
we could replace the stretch eghf with a plain ef with-
out reducing the strength of the path. But that would
create a strongest path between j and k that has fewer
candidates than the one already chosen, whose number of
candidates was already minimal. So all the two-elements
paths nest properly among the paths of greater length.

That established, what of a three-element path,
say cgf? Clearly there is only one 3-element path from c
to f on our list; a second not on our list of equal strength
might exist, say chf ; but of these we choose only one
because only one can be at the head of list sorted by
alphabet. Can the candidates c and f occur separated
by some other candidate or candidates in some path of
greater length? Not if the number of candidates between
number 2 or more, as in jcdefhk, or we could get a path
of equivalent or greater strength by replacing the stretch
cdef with chf ; but that would create a strongest path
between j and k that has fewer candidates than the one
chosen, whose number of candidates was already mini-
mal. Or if the number of candidates were 1, as in jchfk;
then while that path and jcgfk might be of equal strength
and equal length, we would not have put jchfk on our
list because of the rule that we would have selected the
path closest to the head of a list sorted into alphabetical
order.

All the paths so chosen therefore nest, proving the
Lemma. •

The conceptual scheme above is not at all efficient com-
putationally, of course. As observed by M. Schulze [3],
the Floyd-Warshall algorithm, when used not only to find
the strength of a strongest path from j to k, but one rep-
resentative of the set of strongest paths, automatically
produces a set of strongest paths that nest, in a time that
is O(N3), where N is the number of candidates. That is
a stronger result, but it takes more work to prove.
For brevity, refer to the particular path from one can-

didate to another, whose strength equals the maximum
strength of any path from the one to the other, as the
Path (note the capital) from the one to the other, if it
is the path in the set of nested paths constructed by the
Lemma.
We can now prove the theorem by establishing two

successive claims. Call the election with all N candidates
the old election and the election with N − 1 candidates
the new election.
Out of the candidates in the old election choose two,

which we will call α and β. Any candidate not either α
or β we will indicate generically as a candidate x. Sup-
pose every Path that begins with β contains α, either at
its end or between β and its end. We will then call α a
companion of β.

Because all Paths, between whatever pair of candi-
dates, nest, if a Path begins with β, then α is the candi-
date immediately after β. For if α is a companion of β,
and a path of the form β x1 x2 αx3 · · · occurred, then
because all Paths nest, both β x1 and β x1 x2 would be
Paths; but since neither contains α, we would contradict
that α is a companion of β. In particular the simple
two-element link β α must be a Path.
Now strengthen our assumptions about α: only will it

be a companion to β, but it will be the winner of the
old election. A candidate with both properties we shall
denote by a. There must be a Path from a to β, and there
are only two forms that Path might take: either there is
no candidate x between a and β, so that the Path is
the simple link a β; or there are some candidates x in
between a and β, so that the Path is a x′ · · ·β for some
initial candidate x′ followed by some number, perhaps
zero, of other candidates x.

Claim: the condition that in the Path from a to β that a
candidate x′ follow a, and the condition that β beats or
ties x′, are incompatible.

Proof. There must be a Path from a to β; it is
either a β; or a Path with some intermediate number
of candidates x in between, a Path such as a x′ · · · β.
Since a beats β, the strength of the strongest path from a
to β must exceed (>) the strength of the strongest path
from β to a. In particular, the strength of any subsec-
tion of the strongest path from a to β must exceed (>)
the strength of the strongest path from β to a. Hence
the strength of the path x′ · · · β, which is a subsection of
the path a x′ · · ·β, exceeds the strength of the path β a,
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which we know to be the strongest path from β to a. We
may write this comparison of the strength of two paths
as the inequality S(x′ · · ·β) > S(β a).

We also know from nesting that if x′ follows a in a
Path, that a x′ is the Path from a to x′; and we know
that β a is the Path from β to a; and so β ax′ is the Path
from β to x′. If β were to at least tie x′, the strength
of the path β ax′ would at least tie the strength of the
path x′ · · · β. In particular a subsection of the path β ax′

would have a strength that would at least tie the strength
of the path x′ · · · b; and so the strength of βa would at
least tie x′ · · · β. Briefly, we would have S(x′ · · ·β) ≤
S(β a).

The claim follows from the inequalities S(x′ · · ·β) >
S(β a) and S(x′ · · ·β) ≤ S(β a) being incompatible. •

Claim: if the Path from a to β is a β, then every candi-
date x beats β; and so β must be in last place.

Proof. The assumption that the Path a β is the
strongest path from a to β, and the facts that the
Path β a is the Path from β to a, and that a beats β,
imply that the strength of the path a β is > 0 and
the strength of the path β a is < 0. (Alternatively,
that Vaβ > 0, and since the victory matrix is antisymmet-
ric, that Vβa < 0.) The Path from β to any candidate x
leads with the sequence β a · · ·x; since the link βa has
negative (< 0) strength, the strength of the Path from β
to any x must be < 0. Now β x is a path; since its
strength must be ≤ the strength of the strongest path
from β to x, the strength of the link β x must be < 0.

If the strength of the path β x is < 0, clearly the
strength of the reverse path xβ is > 0, because the first
has strength Vβx and the latter strength Vxβ , and V is
antisymmetric. So we have found a path from x to β
whose strength is positive; and therefore the strength of
the strongest path from x to β must be positive; while
the greatest strength of any return path β a · · ·x is neg-
ative. Therefore x beats β. Since x was arbitrary, any
candidate x beats β. Since a also beats β, candidate β
must be in sole last place. •

If we combine the two claims, either the strongest path
from a to β takes the form a β, when every candidate
beats β; or the strongest path has the form a x′ · · ·β for
some candidate x′, when x′ beats β. Whichever condition
holds, if a is a companion of β and a is a sole winner,
then at least one candidate (other than a) beats β, and
so candidate β cannot be in sole second place, nor tied
for second place.

Therefore every candidate that has a companion who
is the winner of the election cannot be in sole second
place, nor tied for second place.

We can now prove the main theorem by reaching a con-
tradiction. Consider a hypothetical candidate q who is in
second place or tied for second place, but when the can-
didate w in first place drops, candidate q falls to sole last
place. For every candidate x, it will be necessary for w
to appear in the strongest path from q to x, or there
is no way to change from x beating q in the race with-
out w, which x must because q is there in sole last place,
and yet have q beating x in the race with w. Clearly w
also appears in the strongest path from q to w. There-
fore w would have to be a companion to q; but if he
were, we reach, contrary to our assumption, that q can-
not be cannot be in second place or tied for second place.
Therefore q cannot exist.

Appendix C: For N = 4, 5, 6, and 7, victory matrices
of interest under Beatpath when the winning

candidate drops out.

We have claimed that when the winning candidate
drops out of a race under Beatpath, that it is possible for
any remaining candidate to come to occupy any place in
the new rank order, with the exceptions that the candi-
date who had placed second cannot come to be placed
last, and the candidate who had been ranked third can-
not come to be ranked first. We here provide, for values
of N from 4 to 7, examples of victory matrices where
each remaining candidate comes to occupy each of the
places we have found to be possible.
In the arrays below, the line of N(N −1)/2 integers to

the left of the vertical bar are the above diagonal elements
of the victory matrix, listed in the order of the column
index increasing fastest; thus for N = 1 they are listed
left to right in the order V12, V13, V14, V23, V24, V34. The
matrices have been chosen so that under Beatpath the
rank order for that victory matrix is unique and is the
order [1, 2, · · · , N ], so that candidate 1 is first in the
rank order and candidate N is the last, with the rest of
the candidates in order. For each matrix, listed to the
right of the vertical bar is the rank order that results
when candidate 1, who had placed first, drops out. Thus
the second line of the array for N = 4 should be read as,
the victory matrix 0 4 −3 6

−4 0 5 −1
3 −5 0 −2

−5 1 1 0


has rank order [1, 2, 3, 4]; when candidate 1 drops, the
new rank order is [4, 2, 3]. The bolded digit shows that
this rank order has been chosen to put candidate 2 in
second place after candidate 1 drops. Some matrices are
used in multiple places in an array.
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N = 4



3 6 −1 5 −2 4
∣∣ 2 3 4

4 −3 6 5 −1 −2
∣∣ 4 2 3

. . . . . .
∣∣ . . 2\

. . . . . .
∣∣ 3\ . .

3 6 −1 5 −2 4
∣∣ 2 3 4

5 −4 3 6 1 −2
∣∣ 2 4 3

4 −3 6 5 −1 −2
∣∣ 4 2 3

5 −4 3 6 1 −2
∣∣ 2 4 3

3 6 −1 5 −2 4
∣∣ 2 3 4



N = 5



1 6 −2 −3 −5 4 8 9 −7 10
∣∣ 2 3 4 5

7 −6 5 −3 8 −2 9 −4 10 −1
∣∣ 4 2 3 5

8 −5 9 7 6 −2 −1 −3 −4 10
∣∣ 4 5 2 3

. . . . . . . . . .
∣∣ . . . 2\

. . . . . . . . . .
∣∣ 3\ . . .

1 6 −2 −3 −5 4 8 9 −7 10
∣∣ 2 3 4 5

7 −6 5 −3 8 −2 9 −4 10 −1
∣∣ 4 2 3 5

10 −6 −2 4 8 7 −5 3 −1 9
∣∣ 2 4 5 3

7 −6 5 −3 8 −2 9 −4 10 −1
∣∣ 4 2 3 5

10 −6 −2 4 8 7 −5 3 −1 9
∣∣ 2 4 5 3

1 6 −2 −3 −5 4 8 9 −7 10
∣∣ 2 3 4 5

7 1 −5 −3 6 −2 10 8 9 −4
∣∣ 2 3 5 4

−5 6 −4 7 9 −8 −3 10 1 −2
∣∣ 5 2 3 4

7 −3 −5 6 8 −2 9 10 −4 −1
∣∣ 2 5 3 4

7 1 −5 −3 6 −2 10 8 9 −4
∣∣ 2 3 5 4

1 6 −2 −3 −5 4 8 9 −7 10
∣∣ 2 3 4 5
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N = 6



13 −3 −4 1 −6 10 −9 14 11 12 −7 8 15 −2 5
∣∣ 2 3 4 5 6

13 −10 14 −7 15 11 −4 6 −5 −8 −2 1 12 −3 9
∣∣ 4 2 5 6 3

14 −12 11 13 −5 15 3 −7 9 −10 1 8 −2 −4 −6
∣∣ 4 5 2 3 6

15 −11 9 13 10 14 −8 −7 −1 −4 3 −5 12 −2 −6
∣∣ 6 4 5 2 3

. . . . . . . . . . . . . . .
∣∣ . . . . 2\

. . . . . . . . . . . . . . .
∣∣ 3\ . . . .

13 −3 −4 1 −6 10 −9 14 11 12 −7 8 15 −2 5
∣∣ 2 3 4 5 6

14 1 −8 −10 7 15 −4 −2 12 13 9 −5 11 −3 −6
∣∣ 2 6 3 4 5

14 −12 11 13 −5 15 3 −7 9 −10 1 8 −2 −4 −6
∣∣ 4 5 2 3 6

13 −12 −4 −9 11 14 10 −1 7 −5 3 −8 15 −2 6
∣∣ 2 4 5 6 3

13 −10 14 −7 15 11 −4 6 −5 −8 −2 1 12 −3 9
∣∣ 4 2 5 6 3

13 −12 −4 −9 11 14 10 −1 7 −5 3 −8 15 −2 6
∣∣ 2 4 5 6 3

13 −3 −4 1 −6 10 −9 14 11 12 −7 8 15 −2 5
∣∣ 2 3 4 5 6

14 1 −8 −10 7 15 −4 −2 12 13 9 −5 11 −3 −6
∣∣ 2 6 3 4 5

12 10 −8 −6 11 15 1 5 −7 9 14 −3 −2 4 13
∣∣ 2 3 5 6 4

9 −8 −2 12 −6 13 −11 −4 14 15 −1 7 3 −5 10
∣∣ 5 2 3 4 6

11 6 −8 13 −5 9 3 12 −1 15 −7 10 −4 −2 14
∣∣ 2 5 3 6 4

13 −12 −4 −9 11 14 10 −1 7 −5 3 −8 15 −2 6
∣∣ 2 4 5 6 3

13 −3 −4 1 −6 10 −9 14 11 12 −7 8 15 −2 5
∣∣ 2 3 4 5 6

12 9 −2 −7 14 13 11 3 −5 8 6 −1 15 10 4
∣∣ 2 3 4 6 5

14 −12 −7 −1 11 15 3 −8 2 9 10 −5 13 −6 4
∣∣ 6 2 3 4 5

14 1 −8 −10 7 15 −4 −2 12 13 9 −5 11 −3 −6
∣∣ 2 6 3 4 5

13 8 −10 −5 3 15 9 −2 11 14 7 12 −6 −1 −4
∣∣ 2 3 6 5 4

13 −12 −4 −9 11 14 10 −1 7 −5 3 −8 15 −2 6
∣∣ 2 4 5 6 3

13 −3 −4 1 −6 10 −9 14 11 12 −7 8 15 −2 5
∣∣ 2 3 4 5 6
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N = 7



17 −14 8 −13 −7 10 16 −11 −9 4 −2 19 −18 5 20 21 15 6 1 −3 12
∣∣ 2 3 4 5 6 7

17 −4 −14 16 13 11 19 7 −12 3 18 15 6 20 −5 1 −10 −8 21 −9 2
∣∣ 5 2 7 3 6 4

16 −2 −15 17 9 4 20 −11 −7 −10 13 19 6 −12 3 8 −14 −5 21 −1 18
∣∣ 5 6 2 3 4 7

14 −13 18 −4 9 8 20 5 3 −11 −2 −6 −12 −10 19 17 −1 16 21 15 −7
∣∣ 4 5 6 2 3 7

18 −14 21 −11 15 7 19 −9 −3 −8 −2 −12 4 5 −1 16 6 −13 20 10 17
∣∣ 4 5 6 7 2 3

. . . . . . . . . . . . . . . . . . . . .
∣∣ . . . . . 2\

. . . . . . . . . . . . . . . . . . . . .
∣∣ 3\ . . . . .

17 −14 8 −13 −7 10 16 −11 −9 4 −2 19 −18 5 20 21 15 6 1 −3 12
∣∣ 2 3 4 5 6 7

17 −9 14 10 4 −5 16 15 −2 20 11 −7 19 8 12 1 −6 21 18 −3 13
∣∣ 2 4 3 5 6 7

17 −4 −14 16 13 11 19 7 −12 3 18 15 6 20 −5 1 −10 −8 21 −9 2
∣∣ 5 2 7 3 6 4

15 −13 14 −3 19 5 18 9 17 −11 6 −1 7 8 12 16 21 −4 20 −2 10
∣∣ 4 2 5 6 3 7

20 −15 −12 5 3 7 17 13 4 14 −11 −6 9 −2 8 21 −16 1 18 −10 19
∣∣ 2 4 5 6 7 3

15 −13 14 −3 19 5 18 9 17 −11 6 −1 7 8 12 16 21 −4 20 −2 10
∣∣ 4 2 5 6 3 7

21 −12 16 7 14 −4 18 −5 20 15 6 3 −11 9 8 17 −10 −1 19 −2 13
∣∣ 2 4 5 6 3 7

17 −14 8 −13 −7 10 16 −11 −9 4 −2 19 −18 5 20 21 15 6 1 −3 12
∣∣ 2 3 4 5 6 7

18 −6 7 −11 19 −9 14 17 −3 −8 15 13 16 −1 21 20 −5 2 4 10 12
∣∣ 6 2 3 4 5 7

17 9 −16 19 14 −10 18 20 −2 11 5 21 6 −12 1 7 4 15 13 −8 3
∣∣ 2 5 6 3 4 7

17 −4 −14 16 13 11 19 7 −12 3 18 15 6 20 −5 1 −10 −8 21 −9 2
∣∣ 5 2 7 3 6 4

17 −4 −14 16 13 11 19 7 −12 3 18 15 6 20 −5 1 −10 −8 21 −9 2
∣∣ 5 2 7 3 6 4

17 9 −16 19 14 −10 18 20 −2 11 5 21 6 −12 1 7 4 15 13 −8 3
∣∣ 2 5 6 3 4 7

15 −13 14 −3 19 5 18 9 17 −11 6 −1 7 8 12 16 21 −4 20 −2 10
∣∣ 4 2 5 6 3 7

17 −14 8 −13 −7 10 16 −11 −9 4 −2 19 −18 5 20 21 15 6 1 −3 12
∣∣ 2 3 4 5 6 7

16 −5 4 13 −14 2 19 −18 11 7 8 20 −1 3 21 15 12 −10 17 −6 9
∣∣ 2 3 4 7 5 6

17 6 18 −10 −9 12 15 −11 20 14 19 21 5 4 −1 −3 −2 13 −7 −8 16
∣∣ 2 3 4 6 7 5

18 −6 7 −11 19 −9 14 17 −3 −8 15 13 16 −1 21 20 −5 2 4 10 12
∣∣ 6 2 3 4 5 7

16 −2 −15 17 9 4 20 −11 −7 −10 13 19 6 −12 3 8 −14 −5 21 −1 18
∣∣ 5 6 2 3 4 7

17 9 −16 19 14 −10 18 20 −2 11 5 21 6 −12 1 7 4 15 13 −8 3
∣∣ 2 5 6 3 4 7

15 −13 14 −3 19 5 18 9 17 −11 6 −1 7 8 12 16 21 −4 20 −2 10
∣∣ 4 2 5 6 3 7

17 −14 8 −13 −7 10 16 −11 −9 4 −2 19 −18 5 20 21 15 6 1 −3 12
∣∣ 2 3 4 5 6 7

16 −5 4 13 −14 2 19 −18 11 7 8 20 −1 3 21 15 12 −10 17 −6 9
∣∣ 2 3 4 7 5 6

12 −11 −5 6 19 20 −10 9 7 14 2 16 −15 18 −8 17 −13 −1 21 −3 −4
∣∣ 7 2 3 4 5 6

16 −7 −6 −14 −9 20 1 19 −4 8 17 18 −15 −12 3 21 13 10 2 −11 −5
∣∣ 2 7 3 4 5 6

17 −4 −14 16 13 11 19 7 −12 3 18 15 6 20 −5 1 −10 −8 21 −9 2
∣∣ 5 2 7 3 6 4

16 −5 4 13 −14 2 19 −18 11 7 8 20 −1 3 21 15 12 −10 17 −6 9
∣∣ 2 3 4 7 5 6

−6 7 19 11 −10 20 21 −15 −16 9 2 17 −13 −4 12 18 1 5 14 −8 −3
∣∣ 2 3 4 5 7 6

17 −14 8 −13 −7 10 16 −11 −9 4 −2 19 −18 5 20 21 15 6 1 −3 12
∣∣ 2 3 4 5 6 7
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FIG. 1. The only cyclic tournament graph N = 3 candidates, up to a permutation of the candidates. The adjacency matrix
for this graph is displayed. This graph as but the one Hamiltonian cycle 1231.
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FIG. 2. The only cyclic tournament graph for N = 4 candidates, up to a permutation of the candidates. The adjacency matrix
for this graph is displayed. This graph has but the one Hamiltonian cycle 12341.
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FIG. 3. One of the six cyclic tournament graphs for N = 5 candidates All six contains the clockwise 5-cycle on the outer
pentagon of 1 → 2 → 3 → 4 → 5 → 1, as well as the horizontal link 2 → 5. They therefore differ only in their various
orientations for the links (1, 4), (5, 3), (4, 2), (3, 1); if a link is anticlockwise like the link 2 → 5 we indicate it with a 1, otherwise
with a 0; by that code, this is the 5-cycle 0001. The adjacency matrix for this graph is displayed. This graph has only the one
Hamiltonian cycle 123451.
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FIG. 4. One of the six cyclic tournament graphs for N = 5 candidates All six contains the clockwise 5-cycle on the outer
pentagon of 1 → 2 → 3 → 4 → 5 → 1, as well as the horizontal link 2 → 5. They therefore differ only in their various
orientations for the links (1, 4), (5, 3), (4, 2), (3, 1); if a link is anticlockwise like the link 2 → 5 we indicate it with a 1, otherwise
with a 0; by that code, this is the 5-cycle 1001. The adjacency matrix for this graph is displayed. This graph has only the one
Hamiltonian cycle 123451.
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FIG. 5. One of the six cyclic tournament graphs for N = 5 candidates All six contains the clockwise 5-cycle on the outer
pentagon of 1 → 2 → 3 → 4 → 5 → 1, as well as the horizontal link 2 → 5. They therefore differ only in their various
orientations for the links (1, 4), (5, 3), (4, 2), (3, 1); if a link is anticlockwise like the link 2 → 5 we indicate it with a 1, otherwise
with a 0; by that code, this is the 5-cycle 0000. The adjacency matrix for this graph is displayed. This graph has only the one
Hamiltonian cycle 123451.
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FIG. 6. One of the six cyclic tournament graphs for N = 5 candidates All six contains the clockwise 5-cycle on the outer
pentagon of 1 → 2 → 3 → 4 → 5 → 1, as well as the horizontal link 2 → 5. They therefore differ only in their various
orientations for the links (1, 4), (5, 3), (4, 2), (3, 1); if a link is anticlockwise like the link 2 → 5 we indicate it with a 1, otherwise
with a 0; by that code, this is the 5-cycle 0101. The adjacency matrix for this graph is displayed. This graph has just two
Hamiltonian cycles, 123451 and 125341.
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FIG. 7. One of the six cyclic tournament graphs for N = 5 candidates All six contains the clockwise 5-cycle on the outer
pentagon of 1 → 2 → 3 → 4 → 5 → 1, as well as the horizontal link 2 → 5. They therefore differ only in their various
orientations for the links (1, 4), (5, 3), (4, 2), (3, 1); if a link is anticlockwise like the link 2 → 5 we indicate it with a 1, otherwise
with a 0; by that code, this is the 5-cycle 0100. The adjacency matrix for this graph is displayed. This graph as just two
Hamiltonian cycles, 123451 and 125341
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FIG. 8. One of the six cyclic tournament graphs for N = 5 candidates All six contains the clockwise 5-cycle on the outer
pentagon of 1 → 2 → 3 → 4 → 5 → 1, as well as the horizontal link 2 → 5. They therefore differ only in their various
orientations for the links (1, 4), (5, 3), (4, 2), (3, 1); if a link is anticlockwise like the link 2 → 5 we indicate it with a 1, otherwise
with a 0; by that code, this is the 5-cycle 1111. The adjacency matrix for this graph is displayed. This graph as just two
Hamiltonian cycles, 123451 and 142531.


